Getting Started with Linear Regression ====================================== With Mlektic, you can perform univariate or multivariate linear regression using the least squares method or by considering various optimization options available in the `optimizer_archt` module. Supported optimization methods include: - ‘sgd-standard’ - ‘sgd-stochastic’ - ‘sgd-mini-batch’ - ‘sgd-momentum’ - ‘nesterov’ - ‘adagrad’ - ‘adadelta’ - ‘rmsprop’ - ‘adam’ - ‘adamax’ - ‘nadam’ For more details on the `optimizer_archt` module, please refer to the `optimizer_archt documentation `_. You can also apply regularization to improve model generalization. The `regularizer_archt` module supports the following regularization methods: - ‘l1’ (default) - ‘l2’ - ‘elastic_net’ To learn more about the `regularizer_archt` module, please refer to the `regularizer_archt documentation `_. For example, you can train a model using linear regression with standard gradient descent and L1 regularization with the `LinearRegressionArcht` module as follows: .. code-block:: python from mlektic.linear_reg import LinearRegressionArcht from mlektic import preprocessing from mlektic import methods import pandas as pd import numpy as np # Generate random data. np.random.seed(42) n_samples = 100 feature1 = np.random.rand(n_samples) feature2 = np.random.rand(n_samples) target = 3 * feature1 + 5 * feature2 + np.random.randn(n_samples) * 0.5 # Create pandas dataframe from the data. df = pd.DataFrame({ 'feature1': feature1, 'feature2': feature2, 'target': target }) # Create train and test sets. train_set, test_set = preprocessing.pd_dataset(df, ['feature1', 'feature2'], 'target', 0.8) # Define regularizer and optimizer. regularizer = methods.regularizer_archt('l1', lambda_value=0.01) optimizer = methods.optimizer_archt('sgd-standard') # Configure the model. lin_reg = LinearRegressionArcht(iterations=50, optimizer=optimizer, regularizer=regularizer) # Train the model. lin_reg.train(train_set) .. code-block:: text Epoch 5, Loss: 15.191523551940918 Epoch 10, Loss: 11.642797470092773 Epoch 15, Loss: 9.021803855895996 Epoch 20, Loss: 7.08500862121582 Epoch 25, Loss: 5.652813911437988 Epoch 30, Loss: 4.592779636383057 Epoch 35, Loss: 3.807236909866333 Epoch 40, Loss: 3.2241621017456055 Epoch 45, Loss: 2.790440320968628 Epoch 50, Loss: 2.4669017791748047 To learn more about the `LinearRegressionArcht` module, please refer to the `LinearRegressionArcht documentation `_. The cost evolution can be plotted with the `plot_cost `_ method: .. code-block:: python from mlektic.plot_utils import plot_cost cost_history = lin_reg.get_cost_history() plot_cost(cost_history, dim=(7, 5)) .. raw:: html

cost plot

Different evaluation metrics can be obtained: .. code-block:: python mse = lin_reg.eval(test_set, 'mse') rmse = lin_reg.eval(test_set, 'rmse') mae = lin_reg.eval(test_set, 'mae') mape = lin_reg.eval(test_set, 'mape') r2 = lin_reg.eval(test_set, 'r2') corr = lin_reg.eval(test_set, 'corr') print(f'MSE: {mse}') print(f'RMSE: {rmse}') print(f'MAE: {mae}') print(f'MAPE: {mape}') print(f'R²: {r2}') print(f'Pearson Coefficient: {corr}') .. code-block:: text MSE: 2.451315402984619 RMSE: 1.565667748451233 MAE: 1.28024423122406 MAPE: 38.169368743896484 R²: 0.3232208490371704 Pearson Coefficient: 0.9599050283432007 Print the parameters obtained by training: .. code-block:: python print("Weights:", lin_reg.get_parameters()) print("Intercept:", lin_reg.get_intercept()) .. code-block:: text Weights: [[1.0966599] [1.3730361]] Intercept: [1.9968479] And make predictions: .. code-block:: python prediction = lin_reg.predict(2.0) print(f'Prediction: {prediction[0][0]}') .. code-block:: text Prediction: 6.936239719390869 Finally, you can save the model parameters in a JSON format for future use: .. code-block:: python lin_reg.save_model('linear_regression_model.json')