BIBLIOGRAFÍA
- Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for Machine Learning (1. ed.). Cambridge University Press.
- Kelleher, J. D., Namee, M. B., & D’Arcy, A. (2020). Fundamentals of Machine Learning for Predictive Data Analytics, second edition: Algorithms, Worked Examples, and Case Studies. The MIT Press.
- Brandt, S. (2020). Data Analysis: Statistical and Computational Methods for Scientists and Engineers (English Edition). Springer.
- Brunton, S. L., & Kutz, N. J. (2022). Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2nd ed.). Cambridge University Press.
- Trask, C. A. (2019). Grokking Deep Learning. Manning Publications.
- Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
- Ertel, W., & Black, N. T. (2018). Introduction to Artificial Intelligence (2nd 2017 ed.). Springer.
- Igual, L., Seguí, S., Vitrià, J., Puertas, E., Radeva, P., Pujol, O., Escalera, S., Dantí, F., & Garrido, L. (2017). Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications (2017 ed.). Springer.
- Skansi, S. (2018). Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence (2018 ed.). Springer.
- Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer Publishing.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Publishing.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. The MIT Press.
- Haykin, S. S. (2009). Neural Networks and Learning Machines. Prentice Hall.
- Heumann, C., Schomaker, M., & S. (2017). Introduction to Statistics and Data Analysis. Springer Publishing.
- Kubat, M. (2017). An Introduction to Machine Learning. Springer Publishing.
- Marsland, S. (2014). Machine Learning. Amsterdam University Press.
- Mehlig, B. (2021). Machine Learning with Neural Networks: An Introduction for Scientists and Engineers (New ed.). Cambridge University Press.
- Quinn, J., McEachen, J. J., Fullan, M., Gardner, M., & Drummy, M. (2019). Dive Into Deep Learning: Tools for Engagement. Corwin Publishers.
- Suthaharan, S. (2015). Machine Learning Models and Algorithms for Big Data Classification. Springer Publishing.
- XiaojinZhu and Andrew B.GoldbergSynthesis Lectures on Artificial Intelligence and Machine Learning, 2009, Vol. 3, No. 1 , Pages 1-130
(https://doi.org/10.2200/S00196ED1V01Y200906AIM006) Shalev-Shwartz, S. & Ben-David, S. (2014, 17 julio). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.
Efron, B. & Hastie, T. (2021, 17 junio). Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science: 6. Cambridge University Press.
Interpretable Machine Learning. (2022, 26 septiembre). https://christophm.github.io/. Recuperado 5 de octubre de 2022, de https://christophm.github.io/interpretable-ml-book/index.html
García, S., Luengo, J. & Herrera, F. (2014). Data Preprocessing in Data Mining. Springer Publishing.
Fan, Cheng & Chen, Meiling & Wang, Xinghua & Wang, Jiayuan & Huang, Bufu. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research. 9. 10.3389/fenrg.2021.652801.
- Data Mining: Concepts and Techniques, 2nd ed., Jiawei Han and Micheline Kamber, Morgan Kaufmann, 2006
Web API | Spotify for Developers. (s. f.). https://developer.spotify.com/documentation/web-api
- Welcome to Spotipy! — spotipy 2.0 documentation. (s. f.). https://spotipy.readthedocs.io/en/2.22.1/#
Panik, M. J. (2005). Advanced Statistics from an Elementary Point of View. Academic Press.
Park, H. (2013). An Introduction to Logistic Regression: From Basic Concepts to Interpretation with Particular Attention to Nursing Domain. Journal of Korean Academy of Nursing, 43(2), 154. https://doi.org/10.4040/jkan.2013.43.2.154
- Sahami, M. (2016). Statistical Modeling to Better Understand CS Students. https://doi.org/10.1145/2899415.2925470
- Liew, A. L. (2013). DIKIW: Data, Information, Knowledge, Intelligence, Wisdom and their Interrelationships. Business Management Dynamics, 2(10), 49-62.
- D E Smith, A Source Book in Mathematics, McGraw-Hill 1929 and Dover 1959,
Volume II, pages 576–579. Wang, Q., Ma, Y., Zhao, K., & Tian, Y. (2020). A Comprehensive Survey of Loss Functions in Machine Learning. Annals Of Data Science, 9(2), 187-212. https://doi.org/10.1007/s40745-020-00253-5
- Ciampiconi, L., Elwood, A., Leonardi, M. (2023) A survey and Taxonomy of loss functions in Machine learning. arXiv:2301.05579. doi:10.48550/arXiv.2301.05579
- David, F. N., & Tukey, J. W. (1977). Exploratory data analysis. Biometrics, 33(4), 768. https://doi.org/10.2307/2529486
- Ghosh, A., Nashaat, M., Miller, J., Quader, S., & Marston, C. (2018). A comprehensive review of tools for exploratory analysis of tabular industrial datasets. Visual Informatics, 2(4), 235-253. https://doi.org/10.1016/j.visinf.2018.12.004
- Chatfield, C. (1986). Exploratory data analysis. European Journal of Operational Research, 23(1), 5-13. https://doi.org/10.1016/0377-2217(86)90209-2
- ScienceDirect. (s.f.). Exploratory data analysis. Retrieved from https://www.sciencedirect.com/topics/social-sciences/exploratory-data-analysis